Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We report a timing analysis of near-infrared (NIR), X-ray, and submillimeter data during a 3 day coordinated campaign observing Sagittarius A*. Data were collected at 4.5 μ m with the Spitzer Space Telescope, 2–8 keV with the Chandra X-ray Observatory, 3–70 keV with NuSTAR, 340 GHz with ALMA, and 2.2 μ m with the GRAVITY instrument on the Very Large Telescope Interferometer. Two dates show moderate variability with no significant lags between the submillimeter and the infrared at 99% confidence. A moderately bright NIR flare ( F K ∼ 15 mJy) was captured on July 18 simultaneous with an X-ray flare ( F 2−10 keV ∼ 0.1 counts s −1 ) that most likely preceded bright submillimeter flux ( F 340 GHz ∼ 5.5 Jy) by about + 34 − 33 + 14 minutes at 99% confidence. The uncertainty in this lag is dominated by the fact that we did not observe the peak of the submillimeter emission. A synchrotron source cooled through adiabatic expansion can describe a rise in the submillimeter once the synchrotron self-Compton NIR and X-ray peaks have faded. This model predicts high GHz and THz fluxes at the time of the NIR/X-ray peak and electron densities well above those implied from average accretion rates for Sgr A*. However, the higher electron density postulated in this scenario would be in agreement with the idea that 2019 was an extraordinary epoch with a heightened accretion rate. Since the NIR and X-ray peaks can also be fit by a nonthermal synchrotron source with lower electron densities, we cannot rule out an unrelated chance coincidence of this bright submillimeter flare with the NIR/X-ray emission.more » « less
-
Context.Blazars are beamed active galactic nuclei (AGNs) known for their strong multi-wavelength variability on timescales ranging from years down to minutes. Many different models have been proposed to explain this variability. Aims.We aim to investigate the suitability of the twisting jet model presented in previous works to explain the multi-wavelength behaviour of BL Lacertae, the prototype of one of the blazar classes. According to this model, the jet is inhomogeneous, curved, and twisting, and the long-term variability is due to changes in the Doppler factor due to variations in the orientation of the jet-emitting regions. Methods.We analysed optical data of the source obtained during monitoring campaigns organised by the Whole Earth Blazar Telescope (WEBT) in 2019–2022, together with radio data from the WEBT and other teams, andγ-ray data from theFermisatellite. In this period, BL Lacertae underwent an extraordinary activity phase, reaching its historical optical andγ-ray brightness maxima. Results.The application of the twisting jet model to the source light curves allows us to infer the wiggling motion of the optical, radio, andγ-ray jet-emitting regions. The optical-radio correlation shows that the changes in the radio viewing angle follow those in the optical viewing angle by about 120 days, and it suggests that the jet is composed of plasma filaments, which is in agreement with some radio high-resolution observations of other sources. Theγ-ray emitting region is found to be co-spatial with the optical one, and the analysis of theγ-optical correlation is consistent with both the geometric interpretation and a synchrotron self-Compton (SSC) origin of the high-energy photons. Conclusions.We propose a geometric scenario where the jet is made up of a pair of emitting plasma filaments in a sort of double-helix curved rotating structure, whose wiggling motion produces changes in the Doppler beaming and can thus explain the observed multi-wavelength long-term variability.more » « lessFree, publicly-accessible full text available November 1, 2025
-
Aims.Mrk 421 was in its most active state around early 2010, which led to the highest TeV gamma-ray flux ever recorded from any active galactic nuclei (AGN). We aim to characterize the multiwavelength behavior during this exceptional year for Mrk 421, and evaluate whether it is consistent with the picture derived with data from other less exceptional years. Methods.We investigated the period from November 5, 2009, (MJD 55140) until July 3, 2010, (MJD 55380) with extensive coverage from very-high-energy (VHE;E > 100 GeV) gamma rays to radio with MAGIC, VERITAS,Fermi-LAT,RXTE,Swift, GASP-WEBT, VLBA, and a variety of additional optical and radio telescopes. We characterized the variability by deriving fractional variabilities as well as power spectral densities (PSDs). In addition, we investigated images of the jet taken with VLBA and the correlation behavior among different energy bands. Results.Mrk 421 was in widely different states of activity throughout the campaign, ranging from a low-emission state to its highest VHE flux ever recorded. We find the strongest variability in X-rays and VHE gamma rays, and PSDs compatible with power-law functions with indices around 1.5. We observe strong correlations between X-rays and VHE gamma rays at zero time lag with varying characteristics depending on the exact energy band. We also report a marginally significant (∼3σ) positive correlation between high-energy (HE;E > 100 MeV) gamma rays and the ultraviolet band. We detected marginally significant (∼3σ) correlations between the HE and VHE gamma rays, and between HE gamma rays and the X-ray, that disappear when the large flare in February 2010 is excluded from the correlation study, hence indicating the exceptionality of this flaring event in comparison with the rest of the campaign. The 2010 violent activity of Mrk 421 also yielded the first ejection of features in the VLBA images of the jet of Mrk 421. Yet the large uncertainties in the ejection times of these unprecedented radio features prevent us from firmly associating them to the specific flares recorded during the 2010 campaign. We also show that the collected multi-instrument data are consistent with a scenario where the emission is dominated by two regions, a compact and extended zone, which could be considered as a simplified implementation of an energy-stratified jet as suggested by recentIXPEobservations.more » « lessFree, publicly-accessible full text available February 1, 2026
-
We report the time-resolved spectral analysis of a bright near-infrared and moderate X-ray flare of Sgr A ⋆ . We obtained light curves in the M , K , and H bands in the mid- and near-infrared and in the 2 − 8 keV and 2 − 70 keV bands in the X-ray. The observed spectral slope in the near-infrared band is νL ν ∝ ν 0.5 ± 0.2 ; the spectral slope observed in the X-ray band is νL ν ∝ ν −0.7 ± 0.5 . Using a fast numerical implementation of a synchrotron sphere with a constant radius, magnetic field, and electron density (i.e., a one-zone model), we tested various synchrotron and synchrotron self-Compton scenarios. The observed near-infrared brightness and X-ray faintness, together with the observed spectral slopes, pose challenges for all models explored. We rule out a scenario in which the near-infrared emission is synchrotron emission and the X-ray emission is synchrotron self-Compton. Two realizations of the one-zone model can explain the observed flare and its temporal correlation: one-zone model in which the near-infrared and X-ray luminosity are produced by synchrotron self-Compton and a model in which the luminosity stems from a cooled synchrotron spectrum. Both models can describe the mean spectral energy distribution (SED) and temporal evolution similarly well. In order to describe the mean SED, both models require specific values of the maximum Lorentz factor γ max , which differ by roughly two orders of magnitude. The synchrotron self-Compton model suggests that electrons are accelerated to γ max ∼ 500, while cooled synchrotron model requires acceleration up to γ max ∼ 5 × 10 4 . The synchrotron self-Compton scenario requires electron densities of 10 10 cm −3 that are much larger than typical ambient densities in the accretion flow. Furthermore, it requires a variation of the particle density that is inconsistent with the average mass-flow rate inferred from polarization measurements and can therefore only be realized in an extraordinary accretion event. In contrast, assuming a source size of 1 R S , the cooled synchrotron scenario can be realized with densities and magnetic fields comparable with the ambient accretion flow. For both models, the temporal evolution is regulated through the maximum acceleration factor γ max , implying that sustained particle acceleration is required to explain at least a part of the temporal evolution of the flare.more » « less
-
Context.The nearby elliptical galaxy M87 contains one of only two supermassive black holes whose emission surrounding the event horizon has been imaged by the Event Horizon Telescope (EHT). In 2018, more than two dozen multi-wavelength (MWL) facilities (from radio toγ-ray energies) took part in the second M87 EHT campaign. Aims.The goal of this extensive MWL campaign was to better understand the physics of the accreting black hole M87*, the relationship between the inflow and inner jets, and the high-energy particle acceleration. Understanding the complex astrophysics is also a necessary first step towards performing further tests of general relativity. Methods.The MWL campaign took place in April 2018, overlapping with the EHT M87* observations. We present a new, contemporaneous spectral energy distribution (SED) ranging from radio to very high-energy (VHE)γ-rays as well as details of the individual observations and light curves. We also conducted phenomenological modelling to investigate the basic source properties. Results.We present the first VHEγ-ray flare from M87 detected since 2010. The flux above 350 GeV more than doubled within a period of ≈36 hours. We find that the X-ray flux is enhanced by about a factor of two compared to 2017, while the radio and millimetre core fluxes are consistent between 2017 and 2018. We detect evidence for a monotonically increasing jet position angle that corresponds to variations in the bright spot of the EHT image. Conclusions.Our results show the value of continued MWL monitoring together with precision imaging for addressing the origins of high-energy particle acceleration. While we cannot currently pinpoint the precise location where such acceleration takes place, the new VHEγ-ray flare already presents a challenge to simple one-zone leptonic emission model approaches, and it emphasises the need for combined image and spectral modelling.more » « lessFree, publicly-accessible full text available December 1, 2025
An official website of the United States government
